Answer:
V = k Q/l ln [(l +√(l² + x²)) / x]
Explanation:
The electrical potential for a continuous distribution of charges is
V = k ∫ dq / r
Let's apply this expression to our case, define a linear charge density for the bar
λ = dq / dy
dq = λ dy
The distance from a point on the bar to the x-axis is
r = √ (x² + y²)
Let's replace
V = K ∫ λ dy /√ (x² + y²)
We integrate
V = k λ ln (y + √ (x² + y²))
Let's evaluate between y = 0 and y = l
V = k λ [ ln (l +√(x² + l²) - ln x]
We substitute the linear density
V = k Q/l ln [(l +√(l² + x²)) / x]
Answer:
6.44 s
Explanation:
Given:
v₀ = 119 m/s
v = 233 m/s
a = 17.7 m/s²
Find: t
v = at + v₀
(233 m/s) = (17.7 m/s²) t + (119 m/s)
t = 6.44 s
The acceleration due to gravity varies in different positions on Earth. However it is said to be negligible and 9.8 m/s is used. Sometimes people use 10 m/s or 9.81 m/s
On half life is 5370 years; 6 half lives have passed. You just multiply,
5370*6 = 32,220 years
Answer:
The magnification is 
Explanation:
From the question we are told that
The power of the lens is 
Generally 
The object distance is
the negative sign is because the distance is measured in the opposite direction of incident light (i.e away )
Generally the focal length is mathematically represented as
=>
=> 
converting to cm
=> 
Generally from lens equation we have that

=> 
=> 
Generally the magnification is mathematically represented as

=> 
=> 