Answer:
The star is at a distance of 100 parsecs.
Explanation:
The distance can be determined by means of the distance modulus:
(1)
Where M is the absolute magnitude, m is the apparent magnitude and d is the distance in units of parsec.
Therefore, d can be isolated from equation 1

Then, Applying logarithmic properties it is gotten:
(2)
The absolute magnitude is the intrinsic brightness of a star, while the apparent magnitude is the apparent brightness that a star will appear to have as is seen from the Earth.
Since both have the same spectral type is absolute magnitude will be the same.
Finally, equation 2 can be used:
Hence, the star is at a distance of 100 parsecs.
Key term:
Parsec: Parallax of arc seconds
Answer:
a. approximately
(first minimum.)
b. approximately
(first maximum.)
c. approximately
(second minimum.)
d. approximately
(second maximum.)
Explanation:
Let
represent the separation between the two speakers (the two "slits" based on the assumptions.)
Let
represent the angle between:
- the line joining the microphone and the center of the two speakers, and
- the line that goes through the center of the two speakers that is also normal to the line joining the two speakers.
The distance between the microphone and point
would thus be
meters.
Based on the assumptions and the equation from Young's double-slit experiment:
.
Hence:
.
The "path difference" in these two equations refers to the difference between the distances between the microphone and each of the two speakers. Let
denote the wavelength of this wave.
.
Calculate the wavelength of this wave based on its frequency and its velocity:
.
Calculate
for each of these path differences:
.
In each of these case, the distance between the microphone and
would be
. Therefore:
- At the first minimum, the distance from
is approximately
. - At the first maximum, the distance from
is approximately
. - At the second minimum, the distance from
is approximately
. - At the second maximum, the distance from
is approximately
.
Cathode rays were shown to be a stream of "electrons".
Cathode rays (likewise called an electron beam) are streams of electrons saw in vacuum tubes. In the event that a cleared glass tube is outfitted with two anodes and a voltage is connected, the glass inverse the negative terminal is seen to sparkle from electrons radiated from the cathode. Electrons were first found as the constituents of cathode beams. The picture in an exemplary TV is made by centered light emission redirected by electric or magnetic fields in cathode ray tubes (CRTs).
The change in surface area of Gaussian surface with radius (r) is 8πr.
<h3>
Electric field from Coulomb's law</h3>
The electric field experienced by a charge is calculated as follows;

where;
- E is the electric field
- Q is the charge
- r is the radius
The electric field reduces by a factor of 
<h3>Surface area of a Gaussian surface;</h3>
The surface area of a sphere is given as;

<h3>Change in area with r</h3>

Thus, the change in surface area of Gaussian surface with radius (r) is 8πr.
Learn more about area of Gaussian surfaces here: brainly.com/question/17060446