1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
3 years ago
7

Mrs.mayuko paid 40.68 for 3kg of sheimp whats the cost of 1 kilogram of shrimp

Mathematics
2 answers:
Dimas [21]3 years ago
8 0
13.56 for 1kg of shrimp
Rus_ich [418]3 years ago
8 0
Divide it by 40.68 by 3 to get 13.56 as your answer.
You might be interested in
Help plz.................
Furkat [3]

Answer:

anawer:D he most popoular

6 0
3 years ago
2s+4+4s+2+3 what do you have to do to get this answer
VikaD [51]
Combine like terms... 2s and 4s are like terms so that's 6s 4,2,3 are like terms add that up its 9. So it would look like this 6s+9
5 0
3 years ago
An observation deck extends 120 feet out above a valley. The deck sits 70 feet above the valley floor. If an object is dropped f
Rzqust [24]

Answer:

2

Step-by-step explanation:

The height formula given is:

h = -16t^2 + 70

That means the object will be initially (t=0) at the height 70 feet, from where it will be dropped.

If we want to know the time when the object will be at height 6 feet, we just need to use h=6 in the equation, and then calculate the value of t:

6 = -16t^2 + 70

16t^2 = 64

t^2 =4

t = 2 s

So, it will take 2 seconds for the object to be 6 feet above the valley floor.

8 0
3 years ago
100 POINTS!!!! CAN ANYONE PLEASE HELP ME OUT WITH THIS??!!
JulsSmile [24]
The two boats picked for the trip are the steamboat and the tall ship. Let us assume that we will take the steamboat going to the island, and then we will take the tall ship for the return trip. We will then relate the distances travelled by both ships to each other.

2. We know that the steamboat takes five hours to complete the trip. The tall ship takes more time, at ten hours to complete the trip. We do not have the exact speeds of the steamboat or of the tall ship, but we do know that the tall ship is 10 knots slower than the steamboat. We likewise do not know the exact distance travelled by either ship, but we do know that both travel the same distance. We want to find out how fast each boat travels. We expect the answers to be in knots, with a difference of 10.

3. We know that distance is equivalent to the product of speed of a boat multiplied by the time of travel. For the trip going to the island, we will use the steamboat. Let its speed be x knots (equivalent to x nautical miles per hour), and let the distance going to the island be d nautical miles. Given that the time takes is 5 hours, this means that d = 5x.

4. If we let x be the speed of the boat you are taking to the island (the steamboat), then we know that the speed of the other boat (the tall ship) is 10 knots less than the steamboat's. So the speed of the tall ship (for the return trip) is (x - 10) knots.

5. Similar to part 3: we will multiply speed by time to determine the distance from the island. From part 4, we have determined that the speed of the tall ship to be used in returning is (x - 10) knots. Meanwhile, the given in the problem says that the tall ship will take 10 hours to make the trip. Therefore the distance will be equal to d = 10(x - 10) = 10x - 100 nautical miles.

6. We can assume that the distance travelled going to the island is the same distance travelled coming back. Therefore, we can equate the formula for distance from part 3 for the steamboat, to the distance from part 5 for the tall ship.
5x = 10x - 100

7. Solving for x: 5x = 10x - 100
-5x = -100
x = 20
Since x is the speed of the steamboat, x = 20 means that the steamboat's speed is 20 knots.

8. We determined in part 4 that the speed of the second boat (in our case, the tall ship) is (x - 10) knots. Since we have calculated in part 7 that the steamboat travels at x = 20 knots, then the speed of the tall ship is (x - 10) = 20 - 10 = 10 knots.
THESE ARE JUST ANSWERS I FOUND ONLINE TO SEE IF THEY HELP YOU IF THEY DONT IM SORRY
6 0
3 years ago
n airplane took off from an airport and traveled at a constant rate and angle of elevation. When the airplane reached an altitud
hram777 [196]

The angle of the plane when it rose from the ground is 64.8 degrees

<h3>Application of trigonometry identity</h3>

Given the following parameters from the question

Altitude of the airplane H =  500m

Horizontal distance from airport "d"  = 235

Required

angle of elevation

According to the trigonometry identity

tan x = opposite/adjacent

tan x = H/d
tan x = 500/235

tan x = 2.1277

x = arctan(2.1277)

x = 64.8 degrees

The angle of the plane when it rose from the ground is 64.8 degrees

Learn more on angle of elevation here: brainly.com/question/88158

#SPJ1

7 0
2 years ago
Other questions:
  • Find the sine...... Pls
    12·2 answers
  • Combining like terms.
    8·1 answer
  • What is the distance between the points (2,-3) and (-6,4) on the coordinate plane?
    11·2 answers
  • 30 points for how ever answers this In order to find the amount of paint needed to fill a bucket, which of the following needs t
    10·2 answers
  • A climber starts descending from 553 feet above sea level and keeps going until she reaches 10 feet below sea level. How many fe
    13·1 answer
  • PLEASE HELP ASAP!!! I NEED CORRECT ANSWERS ONLY PLEASE!!!
    12·1 answer
  • U(x)= x^2+1<br> w(x)= √x+6<br><br> Find the following.<br> (u o w) (3)=__<br> (w o u) (3)=__
    12·1 answer
  • "Patricia drank one-fourth of the lemonade in her glass. Write an expression in terms of p that represents the number of ounces
    11·2 answers
  • Thực hiện phép tính:5x^2(x-2)
    8·1 answer
  • Please solve with explanation 20 points
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!