1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
2 years ago
13

10 POONTSGIVINGN BRAINLIEST 5 stars and THANKS TO BEST ANSWER IM REALLY HAVING TROUBLE WITH THIS ONE

Mathematics
1 answer:
Stells [14]2 years ago
5 0

Answer:

A: 1(2x - 1) + 5(4x + 2)

B: Simplify above and divide by 0.5

C: (21 x 3) + (4 x 5 +2)

Step-by-step explanation:

You might be interested in
find the sum of the interior angles of the following polygons.1)Pentagon. 2)hexagon. 3)heptagon. 4)octagon.​
sergejj [24]

Answer:

Sum of interior angles of polygon = (n-2)*180

1) Pentagon:

  • (5-2)*180= 540

2)Hexagon:

  • (6-2)*180= 720

3) Heptagon:

  • (7-2)*180= 900

4) Octagon:

  • (8-2)*180= 1080
3 0
3 years ago
What is the answer to the equation <br> (4 x 6) - 25 + 1
Mashutka [201]
Zero because im smart
5 0
3 years ago
Read 2 more answers
Please help me! This is one of the questions on my Geometry work!
Tamiku [17]

Answer:

I don't know the answer bud

7 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
37 is nearest to what multiple of 10?
Kaylis [27]
4 because 4 x 10 = 40 and 3 x 10 = 30 so 4 is closer
5 0
3 years ago
Read 2 more answers
Other questions:
  • What equals 125 in multiplication
    8·2 answers
  • What is the probability that a point chosen at random in the given figure will be inside the larger square and outside the small
    6·2 answers
  • Which relation is represented by the arrow diagram?
    8·2 answers
  • Y=3 - 2x<br> 3x + 4y = 1
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=3%20%2B%20%20%5Cfrac%7Bx%20-%203%7D%7B9%20-%20%20%7Bx%7D%5E%7B2%7D%20%7D%20%5Cdiv%203%20-%20%2
    11·1 answer
  • What is the answer to 5-10x&lt;-145
    9·1 answer
  • How do you graph (-2,1/2)
    15·1 answer
  • Is it possible for two rectangles to have the same area but only if they also have the same perimeter
    6·1 answer
  • Sean and sarah spend $70 a month eating out how much money would they have after 15 years if they invested the money instead at
    7·1 answer
  • What does point A represent?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!