The osmotic pressure of a solution is a colligative property, which means that it depends on the number of particles of solute in the solution.
Formula: Osmotic pressure = MRT, where M is the molarity of the solution, R is the universal constant of ideal gases and T is the absolute temperature of the solution.
So, the answer is the option .: the osmotic pressure of a solution increases as the number of particles of solute in the solution increases.
Answer:
I believe the answer is Newton's Second Law
Explanation:
Newton's Second Law states that the acceleration of an object will count on how much mass and the amount of force that is applied.
The bowling ball was dropped from the 10th story window and had more force than when the ball was dropped from the 5th story window because the 10th story window gave the bowling ball more acceleration.
Formation of ammonia by nitrogen and hydrogen is habers process wher 28g N2 results in formation of 34g NH3
so 35g N2 will form 34*35/28=42.5g NH3 where it given that reaction takes place in excess of H2
N2+3H2 gives 2NH3
Answer:
Molecularity of the rate determining step = 2
Explanation:
Step 1 (slow): H₂O₂ + I⁻ -----> H₂O + OI⁻
Step 2 (fast): H₂O₂ + OI⁻ -----> H₂O + O₂ + I⁻
The rate determining step in a reaction mechanism is also considered as slowest step.
Slowest step is also considered its highest activation energy in energy profile diagram.
In this case intermediate (IO⁻) is formed.
Step 1 considered as a slowest step.
So, Rate = K [H₂O₂][I⁻]
Molecularity = 2
Well a question to ask would be if the mass of the material has changed significantly as that would determine that the substance is radioactive or if there have been any high readings found by a Geiger meter in certain period of time
hope that helps