<h3>
Answer:</h3>
150 g Si
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 3.2 × 10²⁴ atoms Si
[Solve] grams Si
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Si - 28.09 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. Instructed to round to 2 sig figs.</em>
149.266 g Si ≈ 150 g Si
Chemical Weathering is the process of decomposition, erosion and spoilage of Solid materials like Building Material, Rocks e.t.c.
This decomposition takes place due to chemical reaction. The chemical present in Air along with water undergo chemical decomposition of Solid materials.
So, first requirement for this process is water, which is present in air called precipitation. Secondly, temperature also play important role.
Result:
<span>The amount of chemical weathering will increase if Temperature and Precipitation Increases.</span>
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.
If a ball is running down a ramp, why is it that when you change the height of the ramp, the ... of the ramp, then you will increase the acceleration of a ball which rolls down the ramp.