<h3>
Answer: b) 0.250 mol</h3>
============================================
Work Shown:
Using the periodic table, we see that
- 1 mole of carbon = 12 grams
- 1 mole of oxygen = 16 grams
These are approximations and these values are often found underneath the atomic symbol. For example, the atomic weight listed under carbon is roughly 12.011 grams. I'm rounding to 2 sig figs in those numbers listed above.
So 1 mole of CO2 is approximately 12+2*16 = 44 grams. The 2 is there since we have 2 oxygens attached to the carbon atom.
-------------------
Since 1 mole of CO2 is 44 grams, we can use that to convert from grams to moles.
11.0 grams of CO2 = (11.0 grams)*(1 mol/44 g) = (11.0/44) mol = 0.250 mol of CO2
In short,
11.0 grams of CO2 = 0.250 mol of CO2
This is approximate.
We don't need to use any of the information in the table.
The answer is 6.88.
Solution:
We can calculate for the percent composition of CaCl2 by mass by dividing the mass of the CaCl2 solute by the mass of the solution and then multiply by 100. The total mass of the resulting solution is the sum of the mass of CaCl2 solute and the mass of water solvent. Therefore, the percent composition of CaCl2 by mass is
% by mass = (mass of the solute / mass of the solution)*100
= mass of solute / (mass of the solute + mass of the solvent)*100
= (27.7 g CaCl2 / 27.7g + 375g) * 100
= 6.88
Bonds are forces of attractions between atoms formed by the transfer of electrons or sharing of electrons. Metallic bond is a type bond that exist in metallic structures where the atoms of the metals attracts the sea of electrons in the structure.It is these metallic bonds that results to the malleability , ductility and conductivity of metals because in that the sea of electrons makes them conduct electricity. In addition the atoms of metals in the structure are ions which can slide past each other in the sea of electrons.
1.Start with the number of grams of each element, given in the problem.
2.Convert the mass of each element to moles using the molar mass from the periodic table.
3.Divide each mole value by the smallest number of moles calculated.
4.Round to the nearest whole number. This is the mole ratio of the elements and is.
When we increase the surface area of an object, more atoms are exposed. Since more atoms are exposed, the atoms can react faster, and this is why the rate of a reaction increases when the surface area increases.
For example, lets say we want to heat a potato. If we just put the whole potato in the microwave, it will take a long time for the potato to get thoroughly heated. However, if we chop the potato into smaller pieces, we will observe that it gets heated much faster. This is because we increased the surface area of the potato, which resulted in more potato atoms to be exposed to the heat, and caused the reaction to be faster.