1. The problem statement, all variables and given/known data A parallel-plate capacitor of capacitance C with circular plates is charged by a constant current I. The radius a of the plates is much larger than the distance d between them, so fringing effects are negligible. Calculate B(r), the magnitude of the magnetic field inside the capacitor as a function of distance from the axis joining the center points of the circular plates. 2. Relevant equations When a capacitor is charged, the electric field E, and hence the electric flux Φ, between the plates changes. This change in flux induces a magnetic field, according to Ampère's law as extended by Maxwell: ∮B⃗ ⋅dl⃗ =μ0(I+ϵ0dΦdt). You will calculate this magnetic field in the space between capacitor plates, where the electric flux changes but the conduction current I is zero.
Answer:
Velocity
Explanation:
The gradient= change in velocity
——————————
Change in time
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer:
Explanation:
Given
Distance between source and receiver 
Sound Intensity 
Distance of of second observer 
Intensity varies as

using this





The answer is "the product of the object's moment of inertia and the object's angular velocity.