I know
the answer do you want me to help you?
<h2>
Kinetic energy just before hitting the floor is 324.57 J</h2>
Explanation:
Weight of volleyball player = 650 N
That is
Mass x Acceleration due to gravity = 650
Mass x 9.81 = 650
Mass = 66.26 kg
We also have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Final velocity, v = ?
Displacement, s = 0.5 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 0.5
v = 3.13 m/s
Velocity with which he lands on ground is 3.13 m/s
We have kinetic energy = 0.5 x Mass x Velocity²
Substituting
Kinetic energy = 0.5 x 66.26 x 3.13²
Kinetic energy = 324.57 J
Kinetic energy just before hitting the floor is 324.57 J
Answer:
The magnitude of the force is 34.59 N.
Explanation:
Given that,
Inside pressure 
Area 
Outside pressure = 1 atm
We need to calculate the magnitude of the force
Using formula of force


Where,
=inside Pressure
=outside Pressure
A = area
Put the value into the formula


Hence, The magnitude of the force is 34.59 N.
Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²