Answer:
Option b. is correct.
Explanation:
In the given question a parachutist is falling toward the ground .
Also, the downward force of gravity is exactly equal to the upward force of air resistance.
So, net force applied to the parachutist is equal to zero ( because both force acts in opposite direction ).
Now by first law of motion :
An object will be in rest or in constant speed unless and until no external force is applied on it .
So, in the question the velocity of the parachutist is not changing with time.
Therefore, option b. is correct.
Hence, this is the required solution.
High pressure systems entail sinking air, while lows entail rising air. High pressure systems form where air converges in the higher levels of the atmosphere. The converging air has nowhere to go and is forced to sink toward the ground. This sinking effect inhibits cloud formation and therefore precipitation.
Answer:
the magnitude of the force that the wire will experience = 1.8 N
Explanation:
The force on a current carrying wire placed in a magnetic field is :
F = Idl × B
where:
I = current flowing through the wire
dl = length of the wire
B = magnetic field
We can equally say that :

where : sin θ is the angle at which the orientation from the magnetic field to the wire occurs = 30°
Then;

Given that:
L = 20 cm = 0.2 m
I = 6 A
B = 3 T
θ = 30°
Then:
F = 3 × 6 × 0.2 sin 30°
F = 1.8 N
Therefore, the magnitude of the force that the wire will experience = 1.8 N
Answer:
A horse pulls a wagon along a road
Answer:
To decide where the balls land, we need to determine how long the balls are in the air. Both balls will take 2 seconds to hit the ground.
Explanation:
1) Time played forward : gravity & drag forces are in opposite directions so it takes a longer time to reach the ground. 2) Time played backward : gravity & drag forces are in the same direction so it takes a shorter time to reach the ground.