Answer:
The minimum frequency is 702.22 Hz
Explanation:
The two speakers are adjusted as attached in the figure. From the given data we know that
=3m
=4m
By Pythagoras theorem

Now
The intensity at O when both speakers are on is given by

Here
- I is the intensity at O when both speakers are on which is given as 6

- I1 is the intensity of one speaker on which is 6

- δ is the Path difference which is given as

- λ is wavelength which is given as

Here
v is the speed of sound which is 320 m/s.
f is the frequency of the sound which is to be calculated.

where k=0,1,2
for minimum frequency
, k=1

So the minimum frequency is 702.22 Hz
All machines are not 100% efficient because of <span>C. Friction</span>
If f=140hz
speed=?
wavelength=?
without all information given, it would be difficult to answer but the formula is speed=frequency ×wavelength
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J