Yes thank u teehee
.................... x
Answer:

Explanation:
Diffraction is observed when a wave is distorted by an obstacle whose dimensions are comparable to the wavelength. The simplest case corresponds to the Fraunhofer diffraction, in which the obstacle is a long, narrow slit, so we can ignore the effects of extremes.
This is a simple case, in which we can use the Fraunhofer single slit diffraction equation:

Where:

Solving for λ:

Replacing the data provided by the problem:

t = 0.527 s
<u>It accelerates for 0.527 s.</u>
<u>Explanation:</u>
We use the formula:
v = u+at
Given:
v = 106 m/s
u = 0 (since no gravity)

So applying the formula,
v = u+at
106 = 0 + 201t
t = 106/201
t = 0.527 s
a. The restoring force in the spring has magnitude
F[spring] = k (0.79 m)
which counters the weight of the mass,
F[weight] = (0.46 kg) g = 4.508 N
so that by Newton's second law,
F[spring] - F[weight] = 0 ⇒ k = (4.508 N) / (0.79 m) ≈ 5.7 N/m
b. Using the same equation as before, we now have
F[weight] = (0.75 kg) g = 7.35 N
so that
(5.7 N/m) x - 7.35 N = 0 ⇒ x = (7.35 N) / (5.7 N/m) ≈ 1.3 m