Answer:
2.5 mi/s^2
Explanation:
please see paper for work!
Answer:
Explanation:
Velocity by definition means speed and direction of an object. This means it has a value and a positive or minus sign indicating direction. Speed is the absolute value of velocity because there is no direction correlated with speed. If you add a direction, it is then called velocity
“Don't hand that holier than thou line to me” is what the asymptote
said to the removable discontinuity.
The distance between the
curve and the line where it approaches zero as they tend to infinity is the line in the asymptote
of a curve. This is unusual for modern authors but in some
sources the requirement that the curve may not cross the line infinitely often
is included.
The point that does not fit the rest of the graph or is
undefined is called a removable discontinuity. By filling in a single
point, the removable discontinuity can be made connected.
Answer: C
Frictional force
Explanation:
The description of the question above is an example of a circular motion.
For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.
Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.
Therefore, the correct answer is option C - the frictional force.
Answer:
distance = 33.124 meters
Explanation:
To solve this question, we will use one of the equations of motion which is:
s = ut + 0.5a * t^2
where:
s is the distance that we want to get
u is the initial velocity = 0
a is the acceleration due to gravity = 9.8 m/sec^2
t is the time = 2.6 sec
Substitute with the givens in the equation to get the distance as follows:
s = ut + 0.5a * t^2
s = (0)(2.6) + 0.5(9.8)(2.6)^2
s = 33.124 meters
Hope this helps :)