Answer: If you use a very small resistance AND the circuit design is such that the voltage drop is across the resistance of the heating-wire-circuit, [nothing else in the circuit is limiting current flow] you will get more heating. That's what we have in a heat anticipator internal-nichrome-wire-heater device.
Explanation:
Answer:
Power output: W=1426.9MW
Explanation:
The power output of the falls is given mainly by its change in potential energy:

The potential energy for any point can be calculated as:

If we consider the base of the falls to be the reference height, at point 2 h=0, so P2=0, and height at point 1 equals 52m:

If we replace m with the mass rate M we obtain the rate of change in potential energy over time, so the power generated:

Answer:
a) speed when Jack sees the pot : 12.92 meters per second
b) height difference 163.115 meters
Explanation:
First to calculate te initial speed we use the acceleration formula:
a= v1-v0/t
Acceleration being gravity's acceleration (9.8 m/s^2)
v1 being the speed when Jill sees the pot
v0 when Jack sees it
and t the time between
Solving for v0 it would be
v1 - a*t = v0
replacing

For the second question we use the position formula setting y0 and t0 as the position and time when jack sees the pot. (and setting the positive axis downward I.E. one meter below jack would be 1m not -1m)
The formula is

replacing

The magnitude of the kinetic friction force, ƒk, on an object is. Where μk is called the kinetic friction coefficient and |FN| is the magnitude of the normal force of the surface on the sliding object. The kinetic friction coefficient is entirely determined by the materials of the sliding surfaces. hope it helps
Answer:
PE = (|accepted value – experimental value| \ accepted value) x 100%
Explanation: