1a) f(x) = I x+2 I. This is a piece-wise graph ( V form)
x = 0 →f(x) =2 (intercept y-axis)
x = -2→f(x) = 0 (intercept x-axis)
x = -3→f(x) = 1 (don't forget this is in absolute numbers)
x = -4→f(x) = 2 (don't forget this is in absolute numbers)
Now you can graph the V graph
1b) Translation: x to shift (-3) units and y remains the same, then
f(x-3) = I x - 3 + 2 I = I x-1 I
the V graph will shift one unit to the right, keeping the same y. Proof:
f(x) = I x-1 I . Intercept x-axis when I x-1 I = 0, so x= 1
Answer:
m = x+y-z
Step-by-step explanation:
Given the expression.
(a^x a ^y) ÷ a^z = a^m
We are to express m in terms of x, y and z.
Using the multiplicative law of indices, the expression becomes:
a^{x+y} ÷ a^z = a^m
Applying the division rule in indices
a^{x+y} ÷ a^z = a^{x+y-z}
The equation becomes
a^{x+y-z} = a^m
Cancel out the base and equate the powers as shown:
x+y-z = m
Hence the expression of m in terms of x, y and z is m = x+y-z
1 true
2 false
3 false
4 true
Answer:

Step-by-step explanation:

= 
Answer:
Remember, the expansion of
is
, where
.
Then,

Then, the coefficient of the term
is 
a) since 6-k=2, then k=4. So the coefficient of
is

b) since 6-k=5, then k=1. So, the coefficient of
is

c) since 6-k=3, then k=3. So, the coefficient of
is
