Answer:
a) 
Explanation:
a) Let assume that the ground is not inclined, since the bottom of the playground slide is tangent to ground. Then, the length of given by the definition of a circular arc:



The bottom of the slide has a height of zero. The physical phenomenon around Dr. Ritchey's daughter is modelled after Principle of Energy Conservation. The child begins at rest:


The average frictional force is cleared within the expression:

![f = \frac{(12\,kg)\cdot [(9.807\,\frac{m}{s^{2}} )\cdot (3\,m)-\frac{1}{2}\cdot (4.5\,\frac{m}{s} )^{2} ]}{6.676\,m}](https://tex.z-dn.net/?f=f%20%3D%20%5Cfrac%7B%2812%5C%2Ckg%29%5Ccdot%20%5B%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%283%5C%2Cm%29-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%284.5%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%5D%7D%7B6.676%5C%2Cm%7D)

Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity
. If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height
. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.
Answer:
<h2>
650W/m²</h2>
Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
Dropping a nuke on another country.