Answer:
B. An isothermal compression of an ideal gas.
Explanation:
The internal energy of an ideal gas is just function of the temperature; it does not matter what other thermodynamic property changes, if the temperature does not change, the internal energy neither does. That is just for ideal gases; real gases behaviour is not like that. All of the other options bring with them an increase or decrease of the temperature:
For A, the temperature will decrease because the gas will do work as it expands, converting part of his internal energy to work.
For C, the temperature will increase, because given
, if the volume increases (expansion) and the pressure is constant, the temperature must increase to satisfy the equation.
Answer: 45 A
Explanation:
Primary only protection 3-phase
I = 3 phase kVA / ( 1.723 * V)
I = 30000 / ( 1.732 * 480 ) = 36.085 A
Table 450.3(B)
Currents of 9A or more column
primary only protection = 125%
Max OCPD pri = 125% of I = 1.25 * 36.085 = 45.11 A
Table 450.3(B) Note 1 does not apply, use next smaller Table 240.6(A)
Next smaller = 45 A
Answer:
Explanation:
a) Power consumption is 4100 J/min / 60 s/min = 68.3 W(atts)
work done raised the potential energy
b) 75(9.8)(1000) / (3(3600)) = 68.055555... 68.1 W
c) efficiency is 68.1 / 68.3 = 0.99593... or nearly 100%
Not a very likely scenario.
Energy captured during the ""photo"" part of photosynthesis is stored in <u>covalent bond</u> during the ""synthesis"" part of the process.
<u>Explanation:</u>
When carbon dioxide, water and sunlight are combindly processed by Plants, algae and a set of bacteria called cyanobacteria to become photoautotrophs, then the process goes is named as Photosynthesis. It generates oxygen, Glyceraldehyde-3-phosphate (G3P), common high-energy carbohydrate molecules which result into glucose, sucrose or other sugar molecules which comprises covalent energy-saving bonds.
Thus the species breakdown these molecules to exhibit energy for cellular functioning. In light-dependent processes, chlorophyll absorbs the radiation from the sunlight and converts it into chemical energy in the form of electron carrier derivatives such as ATP and NADPH. Carbohydrate molecules are constructed from carbon dioxide in light-independent processes i.e in the Calvin cycle, using the chemical energy obtained throughout the light-dependent processes.