<span>At the top of the waterfall, the water has potential energy. Once it goes over</span>
For electrical devices . . .
Power dissipated = (voltage) x (current) =
(12 V) x (3.0 A) = 36 watts .
1 watt means 1 joule per second
(36 joule/sec) x (60 sec/min) x (10 min) = 21,600 joules
Answer:
Graph C
Explanation:
With the same force and more mass, the position in time will still be parabolic
i.e. x = ½at², but the rate of acceleration will be lower so the position curve will be broader.
I’m imagining imagining imagining an imagination...
The text does not specify whether the resistance R of the wire must be kept the same or not: here I assume R must be kept the same.
The relationship between the resistance and the resistivity of a wire is

where

is the resistivity
A is the cross-sectional area
R is the resistance
L is the wire length
the cross-sectional area is given by

where r is the radius of the wire. Substituting in the previous equation ,we find

For the new wire, the length L is kept the same (L'=L) while the radius is doubled (r'=2r), so the new resistivity is

Therefore, the new resistivity must be 4 times the original one.