Answer:
12.7 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 56.7 Km/hr
Maximum height (h) =..?
First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:
Initial velocity (m/s) = 56.7 x 1000/3600
Initial velocity (m/s) = 15.75 m/s
Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:
Initial velocity (u) = 15.75 m/s
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
v = u – gt (since the ball is going against gravity)
0 = 15.75 – 9.8 × t
Rearrange
9.8 × t = 15.75
Divide both side by 9.8
t = 15.75/9.8
t = 1.61 secs.
Finally, we shall determine the maximum height as follow
h = ½gt²
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 1.61 secs.
Height (h) =..?
h = ½gt²
h = ½ × 9.8 × 1.61²
h = 4.9 x 1.61²
h = 12.7 m
Therefore, the maximum height reached by the ball is 12.7 m
The ducks' flight path as observed by someone standing on the ground is the sum of the wind velocity and the ducks' velocity relative to the wind:
ducks (relative to wind) + wind (relative to Earth) = ducks (relative to Earth)
or equivalently,

(see the attached graphic)
We have
- ducks (relative to wind) = 7.0 m/s in some direction <em>θ</em> relative to the positive horizontal direction, or

- wind (relative to Earth) = 5.0 m/s due East, or

- ducks (relative to earth) = some speed <em>v</em> due South, or

Then by setting components equal, we have


We only care about the direction for this question, which we get from the first equation:



or approximately 136º or 224º.
Only one of these directions must be correct. Choosing between them is a matter of picking the one that satisfies <em>both</em> equations. We want

which means <em>θ</em> must be between 180º and 360º (since angles in this range have negative sine).
So the ducks must fly (relative to the air) in a direction 224º relative to the positive horizontal direction, or about 44º South of West.
1. What is the force of the marble?
For an object near the surface of the earth, the gravitational force acting upon the object is given by:
F = mg
F is the gravitational force, m is the object's mass, and g is the acceleration of objects due to earth's gravity.
Given values:
m = 0.025kg, g = 9.8m/s²
Plug in the given values and solve for F:
F = 0.025×9.8
F = 0.25N
2. What is the marble's potential energy at the start of its fall?
The gravitational potential energy of an object near the earth's surface is given by:
PE = mgh
PE is the potential energy, m is the object's mass, g is the acceleration of objects due to earth's gravity, and h is the object's relative height.
new given values:
h = 0.08m
Since F = mg, you can simply multiply F×h to get PE. Use the result from question 1:
PE = F×h
PE = 0.25×0.08
PE = 0.02J
You calculated the density correctly.
When you drop anything into a fluid . . .
-- If the object is MORE dense than the fluid, it sinks.
-- If the object is LESS dense than the fluid, it floats.