No i don’t have snap heheheheheheheh
Answer:
We can have two cases.
A quadratic function where the leading coefficient is larger than zero, in this case the arms of the graph will open up, and it will continue forever, so the maximum in this case is infinite.
A quadratic function where the leading coefficient is negative. In this case the arms of the graph will open down, then the maximum of the quadratic function coincides with the vertex of the function.
Where for a generic function:
y(x) = a*x^2 + b*x + c
The vertex is at:
x = -a/2b
and the maximum value is:
y(-a/2b)
1. -3x + -6
2. -3x + 9
3. 2x - 6
4. -2x + 6
here u go
Well, solve for x.
Combine like terms by performing the opposite operation of subtracting 4x on both sides of the equation
The 4x's will cross out on the right
4x - 4x = 0x = 0
On the left:
2x - 4x = -2x
Now the equation looks like:
-2x + 3 = 2
Continue to combine like terms by subtracting 3 on both sides of the equation
On the left:
3 - 3 = 0
On the right:
2 - 3 = -1
Equation:
-2x = -1
Isolate x by performing the opposite operation of dividing -2 on both sides of the equation
On the left:
-2x ÷ -2 = 1
On the right:
-1 ÷ -2 = 1/2
x= 1/2
So, there is only one solution: 1/2
Answer: 
Step-by-step explanation:
What you are trying to do is isolate the variable x. For you to do that you have to first simplify the left side of the equation and then you solve for x.