Answer:
Diameter will be 351.42 mm
Explanation:
We have given current flowing in the copper wire i = 310 A
Voltage drop across the wire V = 0.55 volt
We know that resistance is given by 
Length of the copper wire l = 1 m
Resisitivity of the copper wire 
We know that resistance 


As area 


So diameter
= 351.42 mm
Answer:
a)
b)
c)
d)
e)
Explanation:
Given that:
- initial speed of turntable,

- full speed of rotation,

- time taken to reach full speed from rest,

- final speed after the change,

- no. of revolutions made to reach the new final speed,

(a)
∵ 1 rev = 2π radians
∴ angular speed ω:

where N = angular speed in rpm.
putting the respective values from case 1 we've


(c)
using the equation of motion:

here α is the angular acceleration



(b)
using the equation of motion:





(d)
using equation of motion:



(e)
using the equation of motion:



Answer:
<h3>The answer is option B</h3>
Explanation:
The frequency of a wave can be found by using the formula

where
c is the velocity
From the question
wavelength = 0.39 m
c = 86 m/s
We have

We have the final answer as
<h3>200 Hz</h3>
Hope this helps you
Its Displacement and Time for sure.
Thank You!
Pls mark Brainliest!
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.