Answer:
C. (-1, 3)
Step-by-step explanation:
Label the 2 equations:
5y= 7x +22 -----(1)
x= -6y +17 -----(2)
Substitute (2) into (1):
5y= 7(-6y +17) +22
5y= -42y +119 +22 <em>(</em><em>Expand</em><em> </em><em>bracket</em><em>)</em>
5y= -42y +141 <em>(</em><em>Simplify</em><em>)</em>
42y +5y= 141 <em>(</em><em>+</em><em>42y</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
47y= 141
y= 141 ÷47 <em>(</em><em>÷</em><em>4</em><em>7</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
y= 3
Substitute y= 3 into (2):
x= -6(3) +17
x= -18 +17
x= -1
Thus, the solution is (-1, 3).
Answer:
Question A: They should add product B because it has a 69% rate of approval. They can be 69% confident that the addition of product B will be successful.
Question B: 31% of people would prefer cookie A over cookie B
Step-by-step explanation:
Answer:
It is a right triangle
Step-by-step explanation:
Answer:
0.00768
Step-by-step explanation:
Correct Question:
Which term could be put in the blank to create a fully simplified polynomial written in standard form?
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y3)
Options

Answer:

Step-by-step explanation:
Given
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y^3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y%5E3)
Required
Fill in the missing gap
We have that:
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y^3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y%5E3)
From the polynomial, we can see that the power of x starts from 3 and stops at 0 while the power of y is constant.
Hence, the variable of the polynomial is x
This implies that the power of x decreases by 1 in each term.
The missing gap has to its left, a term with x to the power of 3 and to its right, a term with x to the power of 1.
This implies that the blank will be filled with a term that has its power of x to be 2
From the list of given options, only
can be used to complete the polynomial.
Hence, the complete polynomial is:
