Vol.250 before its to much pressure
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
The answer to the question is "B. Roman Numerals"
Answer: Option (c) is the correct answer.
Explanation:
Temperature is used as for measuring the average kinetic energy present in a substance or object.
The internal kinetic energy obtained by the molecules of an object is known as thermal energy.
Hence, temperature measures the thermal energy of an object.
Whereas when this thermal energy flows from a hotter object to a cooler object which are placed adjacent to each other then it is known that heat is flowing.
Thus, we can conclude that heat differ from temperature as temperature measures thermal energy, and heat is the flow of thermal energy.