Answer:
The equation for molarity is moles/liter for the first question you would do 0.256/0.143 liters to get 1.790 mol/L
Explanation:
The second problem you would do need to find the moles of NaCl which you would do by doing 4.89 g/58.44g/mol= 0.08367 then do 0.08367/0.600= 0.139 mol/L
The third problem would be the same steps as the second one.
The fourth problem would be (0.460M)(5.50L)= 2.53 moles
Answer: 317 joules
Explanation:
The quantity of heat energy (Q) gained by aluminium depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
In this case,
Q = ?
Mass of aluminium = 50.32g
C = 0.90J/g°C
Φ = (Final temperature - Initial temperature)
= 16°C - 9°C = 7°C
Then, Q = MCΦ
Q = 50.32g x 0.90J/g°C x 7°C
Q = 317 joules
Thus, 317 joules of heat is gained.
Chemical, because it is breaking down the chemical and properties in the candle itself.
Answer:
a. fluorine
Explanation:
Fluorine is the element of group 17 and period 2. The electronic configuration of the element is
.
Stable oxidation state = -1 of fluorine as it gains one electron to gain noble gas configuration.
With alkali metals, which have oxidation state of +1 form ionic compound of the form, MX where X is F.
Among the halogens, fluorine forms the most stable halide because of the comparable size of the hydrogen and fluorine. Thus, it is the weakest acid when compared with other hydrogen halides.
Fluorine is the most reactive in the halogen series and thus, combines with most of the elements.
Fluorine forms inter-halogen compounds of form XA only. Example - ClF.
Hence, option a is correct.