Answer: 0.5 m
Explanation:
Given
Mass of the person is 
Trampoline launches the person into the air up to height of 
Force experience by springs is 
Here, the work done on displacing the springs is equivalent to the Potential energy acquired by the person i.e.
![\Rightarrow F\cdot x=mgh\quad [\text{x=displacement of the trampoline}]\\\\\text{Insert the values}\\\\\Rightarrow x=\dfrac{50\times 9.8\times 2}{1960}\\\\\Rightarrow x=\dfrac{980}{1960}\\\\\Rightarrow x=0.5\ m](https://tex.z-dn.net/?f=%5CRightarrow%20F%5Ccdot%20x%3Dmgh%5Cquad%20%5B%5Ctext%7Bx%3Ddisplacement%20of%20the%20trampoline%7D%5D%5C%5C%5C%5C%5Ctext%7BInsert%20the%20values%7D%5C%5C%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B50%5Ctimes%209.8%5Ctimes%202%7D%7B1960%7D%5C%5C%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B980%7D%7B1960%7D%5C%5C%5C%5C%5CRightarrow%20x%3D0.5%5C%20m)
Answer:
Number of turns on the secondary coil of the adapter transformer is 10.
Explanation:
For a transformer,

where
is the voltage induced in the secondary coil
is the voltage in the primary coil
is the number of turns of secondary coil
is the number of turns of primary coil
From the given question,
= 
⇒
= 
= 9.999733
∴
= 10 turns
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965
Answer:
The mass of the object is 5.045 lbm.
Explanation:
Given;
kinetic energy of the object, K.E = 1558.71 ft.lbf
velocity of the object, V = 141 ft/s
The kinetic energy of the object is calculated as;


Therefore, the mass of the object is 5.045 lbm.