Answer:
-2.5m/s²
Explanation:
The acceleration of a body is giving by the rate of change of the body's velocity. It is given by
a = Δv / t ----------------(i)
Where;
a = acceleration (measured in m/s²)
Δv = change in velocity = final velocity - initial velocity (measure in m/s)
t = time taken for the change (measured in seconds(s))
From the question;
i. initial velocity = 5m/s
final velocity = 0 [since the body (ball) comes to rest]
Δv = 0 - 5 = -5m/s
ii. time taken = t = 2s
<em>Substitute these values into equation (i) as follows;</em>
a = (-5m/s) / (2s)
a = -2.5m/s²
Therefore, the acceleration of the ball is -2.5m/s²
NB: The negative sign shows that the ball was actually decelerating.
Answer:
Resistors in series in the circuit must always have the same current
Explanation:
Resistors are said to be connected in series if they are connected one after another.
The total resistance in the circuit with resistors connected in series is equal to the sum of individual resistances.
Individual resistors in series do not get the total source voltage. Total source voltage divide among them.
We have that Zero signifies a perfect circle shape and 1 shows it maximum out of order shape.
From the question we are told
What does it mean when the orbital eccentricity of a planet is close to 1
Generally
Eccentricity
This in its simplest definition means to be eccentric which means to be a bit out of order or for the given subject at hand means to be a bit out of shape
Naturally the Eccentricity that an object possess is defined by two number 0(zero) to 1(one)
Where
Zero signifies a perfect circle shape and 1 shows it maximum out of order shape
For more information on this visit
brainly.com/question/17208989?referrer=searchResults
Rocks, earth aging, fossils
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by
Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is
According to the data given we have to,
PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is
On the other hand,
The total change of entropy would be,
Since the heat engine is not reversible.
PART B)
Work done by heat engine is given by
Therefore the work in the system is 100000Btu