Answer:
The charge on the droplet is
.
Yes, quantization of charge is obeyed within experimental error.
Explanation:
Given that,
Radius = 1.6μm
Electric field = 46 N/C
Density of oil = 0.085 g/cm³
We need to calculate the charge on the droplet
Using formula of force





Put the value into the formula


We need to calculate the quantization of charge
Using formula of quantization

Put the value into the formula


Yes, quantization of charge is obeyed within experimental error.
Hence, The charge on the droplet is
.
Yes, quantization of charge is obeyed within experimental error.
The resultant<span> is the vector sum of 2 or more vectors. It is the conclusion of adding 2 or more vectors together. If </span>displacement <span>vectors A, B, and C are added together, the result will be vector R.</span>
Answer with Explanation:
Let rest mass
at point P at distance x from center of the planet, along a line connecting the centers of planet and the moon.
Mass of moon=m
Distance between the center of moon and center of planet=D
Mass of planet=M
We are given that net force on an object will be zero
a.We have to derive an expression for x in terms of m, M and D.
We know that gravitational force=
Distance of P from moon=D-x
=Force applied on rest mass due to m
=Force on rest mass due to mas M
because net force is equal to 0.





Let 
Then, 




b.We have to find the ratio R of the mass of the mass of the planet to the mass of the moon when x=
Net force is zero




Hence, the ratio R of the mass of the planet to the mass of the moon=4:1
Λ = 3*10^8 / 9*10^8 = 1/3 m
no. of wavelengths = 60/(1/3) = 180





remember

change distance 150cm to 1.5m
putting values
f =
<h2 /><h3>answer </h3><h3><u>8</u><u>N</u></h3>