Answer:
Therefore the resistance of the conductor is 175Ω
Explanation:
Resistance:
- Resistance of a metallic conductor is directly proportional to its length(l).
- Resistance of a metallic conductor is inversely proportional to its cross section area(A).
The notation sign of resistance is R.
The unit of resistance is ohm (Ω).
Therefore,

and



ρ is the proportional constant.
It is also known as resistivity of that metal.
Given ρ=35×10⁻⁶Ω-m
l= 20 m
A= 4.0×10⁻⁶m²

=175Ω
Therefore the resistance of the conductor is 175Ω
Answer:
A)
B)
C)
Explanation:
Given that:
- no. of turns i the coil,

- area of the coil,

- time interval of rotation,

- intensity of magnetic field,

(A)
Initially the coil area is perpendicular to the magnetic field.
So, magnetic flux is given as:
..................................(1)
is the angle between the area vector and the magnetic field lines. Area vector is always perpendicular to the area given. In this case area vector is parallel to the magnetic field.


(B)
In this case the plane area is parallel to the magnetic field i.e. the area vector is perpendicular to the magnetic field.
∴ 
From eq. (1)


(C)
According to the Faraday's Law we have:



The answer to this is D. Green.
The smash shot in badminton is considered one of the most powerful kind of shot that can tilt the score in your favour. This shot can only be excited when the shuttle is high in the air. The reason behind that is because from a high elevation point, the shuttle is smashed downward over the net into the opponent's court. There is almost no defence against such a shot because it is slammed so quickly and is at such a downward angle that it is difficult for the opponent to receive it.
Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation: