Explanation:
will dissociate into ions as follows.

Hence,
for this reaction will be as follows.
![K_{sp} = [Pb^{2+}][Br^{-}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BPb%5E%7B2%2B%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D)
We take x as the molar solubility of
when we dissolve x moles of solution per liter.
Hence, ionic molarities in the saturated solution will be as follows.
=
+ x
=
+ 2x
So, equilibrium solubility expression will be as follows.
=
Each sodium bromide molecule is giving one bromide ion to the solution. Therefore, one solution contains
= 0.10 and there will be no lead ions. So,
= 0
So,
will approximately equals to
.
Hence, ![K_{sp} = x[Br^{-}]^{2}_{o}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20x%5BBr%5E%7B-%7D%5D%5E%7B2%7D_%7Bo%7D)

x =
M
Thus, we can conclude that molar solubility of
is
M.
Answer:
a. Pb 208
b. About 21.7 minutes
c. only a trace amount
Explanation:
It under goes beta decay.
There should be virtually nothing after an hour
Sharing of electrons always means its a covalent bond, and unequal means it is polar, so it is a polar covalent bond
<span>Electronegativity is the property of an element that measures the
ability of it to attract and form electron bonds. The trend in the periodic
table in terms of electronegativity decreases from right to left and from top
to bottom. In the case of period 4, the element with the highest electronegativity
is bromine. </span>
Answer:
Density = mass / volume,
therefore volume = mass / density. Note that 1 mL = 1 cubic centimeter.
Explanation:
Volume = 15.1g / 3.52g/mL = 4.3mL = 4.3 cubic centimeters.
then a diamond has a density of 3.52 g/mL.