It's lone a little distinction (103 degrees versus 104 degrees in water), and I trust the standard rationalization is that since F is more electronegative than H, the electrons in the O-F bond invest more energy far from the O (and near the F) than the electrons in the O-H bond. That moves the powerful focal point of the unpleasant constrain between the bonding sets far from the O, and thus far from each other. So the shock between the bonding sets is marginally less, while the repugnance between the solitary matches on the O is the same - the outcome is the edge between the bonds is somewhat less.
Answer:
I believe it may be-
1. Series
2. Parallel
3. Parallel
4. Series
Explanation:
In a series circuit, electricity only has one path to follow while a parallel circuit has more than one path to follow.
Answer:
Fe₃Si₇
Explanation:
In order to determine the empirical formula, we have to follow a series of steps.
Step 1: Determine the percent composition
Fe: 46.01%
Si: 53.99%
Step 2: Divide each percentage by the atomic mass of the element
Fe: 46.01/55.85 = 0.8238
Si: 53.99/28.09 = 1.922
Step 3: Divide all the numbers by the smallest one
Fe: 0.8238/0.8238 = 1
Si: 1.922/0.8238 = 2.33
Step 4: Multiply by numbers that make the coefficients whole.
Fe: 1 × 3 = 3
Si: 2.33 × 3 = 7
The empirical formula is Fe₃Si₇.
The mole fraction of KBr in the solution is 0.0001
<h3>How to determine the mole of water</h3>
We'll begin by calculating the mass of the water. This can be obtained as follow:
- Volume of water = 0.4 L = 0.4 × 1000 = 400 mL
- Density of water = 1 g/mL
- Mass of water =?
Density = mass / volume
1 = Mass of water / 400
Croiss multiply
Mass of water = 1 × 400
Mass of water = 400 g
Finally, we shall determine the mole of the water
- Mass of water = 400 g
- Molar mass of water = 18.02 g/mol
- Mole of water = ?
Mole = mass / molar mass
Mole of water = 400 / 18.02
Mole of water = 22.2 moles
<h3>How to de terminethe mole of KBr</h3>
- Mass of KBr = 0.3 g
- Molar mass of KBr = 119 g/mol
- Mole of KBr = ?
Mole = mass / molar mass
Mole of KBr = 0.3 / 119
Mole of KBr = 0.0025 mole
<h3>How to determine the mole fraction of KBr</h3>
- Mole of KBr = 0.0025 mole
- Mole of water = 22.2 moles
- Total mole = 0.0025 + 22.2 = 22.2025 moles
- Mole fraction of KBr =?
Mole fraction = mole / total mole
Mole fraction of KBr = 0.0025 / 22.2025
Mole fraction of KBr = 0.0001
Learn more about mole fraction:
brainly.com/question/2769009
#SPJ1
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.