If you throw a die, this is what you could get:
1, 2, 3, 4, 5 or 6.
--------------
Odd Numbers: 1, 3, 5
Numbers less than Three: 1, 2
---------------
Possibility of getting 1, 2, 3 or 5:
4/6 which translates into 2/3.
---------------
Answer:
2/3
if the diameter of a circle is 15, its radius is half that or 7.5.
![\bf \textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=7.5 \end{cases} A=\pi (7.5)^2\implies A=56.25\pi \implies \stackrel{\pi =3.14}{A=176.625}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D7.5%20%5Cend%7Bcases%7D%20A%3D%5Cpi%20%287.5%29%5E2%5Cimplies%20A%3D56.25%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7BA%3D176.625%7D%20)
Answer:
$110
Step-by-step explanation:
Let a, b, and c represent the earnings of Alan, Bob, and Charles. The problem statement tells us ...
a + b + c = 480 . . . . . . the combined total of their earnings
-a + b = 40 . . . . . . . . . . Bob earned 40 more than Alan
2a - c = 0 . . . . . . . . . . . Charles earned twice as much as Alan
Adding the first and third equations, we get ...
(a + b + c) + (2a - c) = (480) + (0)
3a + b = 480
Subtracting the second equation gives ...
(3a +b) - (-a +b) = (480) -(40)
4a = 440 . . . . . . . . simplify
a = 110 . . . . . . . . . . divide by the coefficient of a
Alan earned $110.
_____
<em>Check</em>
Bob earned $40 more, so $150. Charles earned twice as much, so $220.
The total is then $110 +150 +220 = $480 . . . . as required
From 6,1 to 7,4
We can determine the slope of the line
rise/run
3/1=3
Now we know the slope of the line, a line parallel to it must obtain the same slope, therefore, I tried to see if the increase in y is three times the increase in x
I found the true pair to be A
(-4,1) and (-2,7)
Answer: May 7
Step-by-step explanation: If he watches cars 3 on April 7 and the friend likes to watch movies every 7th day of the month then the next month they can watch movies together!