8x+6-5x=1
3x+6=1
please vote my answer branliest. Thanks.
I can make inferences to the text or article..
Answer:
A function f(x) is said to be periodic, if there exists a positive real number T such that f(x+T) = f(x).
You can also just say: A periodic function is one that repeats itself in regular intervals.
Step-by-step explanation:
The smallest value of T is called the period of the function.
Note: If the value of T is independent of x then f(x) is periodic, and if T is dependent, then f(x) is non-periodic.
For example, here's the graph of sin x. [REFER TO PICTURE BELOW]
Sin x is a periodic function with period 2π because sin(x+2π)=sinx
Other examples of periodic functions are all trigonometric ratios, fractional x (Denoted by {x} which has period 1) and others.
In order to determine the period of the determined graph however, just know that the period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Hopefully this helped a bit.
We know that the Pythagorean Theorem is a² + b² = c² and that the area of a square is l x w.
Firstly, we'll have to find the two measures of the triangle that correspond to the areas.
Since the figures are squares, we know that the length and width values must be the same.
We could square the numbers to find the side lengths, however we would have to square them again when substituting for the Pythagorean Theorem, so we can leave them as-is and adjust the equation accordingly.
(33) + b² = (44)
Next, we'll subtract our smaller value from our larger.
b² = (11)
Once again, we could find the square root of this number, but we'd just have to square it again to find the area of the square, so we can just simply write our answer as 11 units.
Therefore, the area of the square is 11 units!
<em>Hope this helped! :)</em>
Answer:
Hight
1.2
2.4
3.6
4.8
5.9
6.4
7.3
8.6
Step-by-step explanation:
Formula used
8-165
7-135
6-125
5-110
4-95
3-75
2-35
1-10
C%