Answer:
<u>Drag force</u> is the frictional force needed to slow an object in motion
Explanation:
Answer:
88.8 m/s= Speed of wave propagation in the required mode.(3 loops)
Explanation:
When there are 3 loops.
the total length = L = 3 λ /2
⇒ λ = 2 L / 3 = 2 ( 1.11 ) / 3 = 0.74 m
Velocity = v = f λ = (120)(0.74) = 88.8 m/s
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
When you add more water to the balloon, it makes it heavier. Therefore it would weigh the balloon down ( increasing mass) and increasing the energy to plummet down. So the answer is B.
Answer:
F = 200 N
Explanation:
Given that,
The mass suspended from the rope, m = 20 kg
We need to find the resultant force acting on the rope. The resultant force on the rope is equal to its weight such that,
F = mg
Where
g is acceleration due to gravity
Put all the values,
F = 20 kg × 10 m/s²
F = 200 N
So, the resultant force on the mass is 200 N.