Answer:
- a) f is a function. It is not 1-1, it is not onto.
- b) g is not a function.
- c) h is a function. It is not 1-1, it is onto.
- f) h is a function. It is a bijection, and h^-1(x,y)=(y-1,x-1)
Step-by-step explanation:
a) For all x∈ℤ, the number f(x)=x²+1 exists and is unique because f(x) is defined using the operations addition (+) and multiplication (·) on ℤ. Then f is a function. f is not one-to-one: consider -1,1∈ℤ. -1≠1 but f(-1)=f(1)=2- Because two different elements in the domain have the same image under f, f is not 1-1. f is not onto: x²≥0 for all x∈ℤ then f(x)=x²+1≥1>0 for all x∈ℤ. Then 0∈ℕ but for all x∈ℤ f(x)≠0, which means that one element of the codomain doen't have a preimage, so f is not onto.
b) 0∈ℕ, so 0 is an element of the domain of g, but g(0)=1/0 is undefined, therefore g is not a function.
c) Let (z,n)∈ℤ x ℕ. The number h(z,n)=z·1/(n+1) is unique and it's always defined because n+1>0, then h is a function. h is not 1-1: consider the ordered pairs (1,2), (2,5). They are different elements of the domain, but h(2,5)=2/6=1/3=h(1,2). h is onto: any rational number q∈ℚ can be written as q=a/b for some integer a and positive integer b. Then (a,b-1)∈ ℤ x ℕ and h(a,b-1)=a/b=q.
f) For all (x,y)∈ℝ², the pair h(x,y)=(y+1,x+1) is defined and is unique, because the definition of y+1 and x+1 uses the addition operation on ℝ. f is 1-1; suppose that (x,y),(u,v)∈ℝ² are elements of the domain such that h(x,y)=h(u,v). Then (y+1,x+1)=(v+1,u+1), so by equality of ordered pairs y+1=v+1 and x+1=u+1. Thus x=u and y=x, therefore (x,y)=(u,v). f is onto; let (a,b)∈ℝ² be an element of the codomain. Then (b-1,a-1)∈ℝ² is an element of the domain an h(b-1,a-1)=(a-1+1,b-1+1)=(a,b). Because h is 1-1 and onto, then h is a bijection so h has a inverse h^-1 such that for all (x,y)∈ℝ² h(h^-1(x,y))=(x,y) and h^-1(h^(x,y))=(x,y). The previous proof of the surjectivity of h (h onto) suggests that we define h^-1(x,y)=(y-1,x-1). This is the inverse, because h(h^-1(x,y))=h(y-1,x-1)=(x,y) and h^-1(h^(x,y))=h^-1(y+1,x+1)=(x,y).