To solve this question we will use ideal gas equation:

Where:
p = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
We can rearrange formula to get:

We are working woth same gas so we can write following formula. Index 1 stands for conditions before change and index 2 stands for conditions after change.

We are given:
p1=92.1kPa = 92100Pa
V1=200mL = 0.2L
T1=275K
p2= 101325Pa
T2=273K
V2=?
We start by rearranging formula for V2. After that we can insert numbers:
Answer:
Explanation:
Given
Distance between source and receiver 
Sound Intensity 
Distance of of second observer 
Intensity varies as

using this





Added potential energy = (mass) x (gravity) x (height)
or
Added potential energy = (weight) x (added height)
If you need to lift a 15N box 3m straight up, you have to increase its potential energy by (15 N) x (3 m) = 45 Joules .
Where is that added potential energy supposed to come from ? You could use an electric winch, a steam engine, a gasoline-powered motor, thousands of hamsters running on little treadmills that are are connected to the main pulley somehow, or your own arm muscles. But howEVER you do it, you have to provide <em>45 Joules</em> of WORK in order to increase the potential energy of the box by just that much.
Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and
the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:



The range is 35.35 m