When you double capacitance and inductance, the new resonance frequency becomes f/2.
The resonance frequency of RLC series circuit, is the frequency at which the capacity reactance is equal to inductive reactance.
It can also be defined as the natural frequency of an object where it tends to vibrate at a higher amplitude.
Xc = Xl
which gives the value for resonance frequency:

where;
f is the resonance frequency
L is the inductance
C is the capacitance
When you double capacitance and inductance, the new resonance frequency becomes;




Thus from above,
When you double capacitance and inductance, the new resonance frequency becomes f/2.
Learn more about resonance frequency here:
<u>brainly.com/question/13040523</u>
#SPJ4
Answer:
it’s an example of a generator.
Explanation:
Higher pitched sounds produce waves which are closer together than for lower pitched sounds. A smaller triangle or cymbal will make a relatively higher pitch note
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:

Answer:
(a) t = 1.14 s
(b) h = 0.82 m
(c) vf = 7.17 m/s
Explanation:
(b)
Considering the upward motion, we apply the third equation of motion:

where,
g = - 9.8 m/s² (-ve sign for upward motion)
h = max height reached = ?
vf = final speed = 0 m/s
vi = initial speed = 4 m/s
Therefore,

<u>h = 0.82 m</u>
Now, for the time in air during upward motion we use first equation of motion:

(c)
Now we will consider the downward motion and use the third equation of motion:

where,
h = total height = 0.82 m + 1.8 m = 2.62 m
vi = initial speed = 0 m/s
g = 9.8 m/s²
vf = final speed = ?
Therefore,

<u>vf = 7.17 m/s</u>
Now, for the time in air during downward motion we use the first equation of motion:

(a)
Total Time of Flight = t = t₁ + t₂
t = 0.41 s + 0.73 s
<u>t = 1.14 s</u>