Its to capture light or to focus. don't forget to like. :D
Answer:
1. The respiratory system functions when our involuntary nervous system sends impulses to the muscles in the diaphragm; thereby, causing the lungs to expand and contract.
2. The respiratory system oxygenates the blood which is vital for bodily function as oxygenated blood is carried from your lungs to the left side of your heart, to be circulated throughout the body. Furthermore deoxygenated blood is carried back to the right side of your heart to get oxygenated once more.
3. The other body systems that are crucial for the lungs to function are the nervous system and the muscular system.
4. without the raspatory system the body wouldn't receive any oxygen and the brain would slowly die. therefore, without the brain the heart would stop functioning and atrophy etc.
Explanation:
To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.
Answer:The rate of ejection of photoelectrons will increase
Explanation:
If the frequency of incident monochromatic light is held constant and its intensity is increased, the rate of ejection of photoelectrons from the metal surface increases with increase in intensity of the monochromatic light. More current flows due to more ejection of photoelectrons.
Answer:
If the particle is an electron 
If the particle is a proton, 
Explanation:
Initial speed at the origin, 
to +ve x-axis
The particle crosses the x-axis at , x = 1.5 cm = 0.015 m
The particle can either be an electron or a proton:
Mass of an electron, 
Mass of a proton, 
The electric field intensity along the positive y axis
, can be given by the formula:

If the particle is an electron:



If the particle is a proton:


