Okay , so on Google this question will pop up if you look up minimilizing conduction explain.
Explanation:
p
Let us check each statement one by one
a) Sb has a lower ionization energy but a higher electronegativity than I. : As per values given : Definitely Sb has lower ionization energy however the electronegativity of Sb is lower than that of iodine
b) Sb has a higher ionization energy but a lower electronegativity than I. FAlse:
Sb has lower ionization energy than I
c) Sb has a lower ionization energy and a lower electronegativity than I. True
d) Sb has a higher ionization energy and a higher electronegativity than I. False
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
The density of the sample is:
Density = mass / volume
Density = 9.85 / 0.675
Density = 14.6 g/cm³
If the sample has 95% gold, and 5% silver, its density should be:
0.95 x 19.3 + 0.05 x 10.5
Theoretical density = 18.9 g/cm³
The difference in theoretical and actual densities is very large, making it likely that the jeweler was not telling the truth.