Dry air is a mixture of nitrogen, oxygen, carbon dioxide etc.
air is a mixture of gases 78% nitrogen an 21% oxygen and other components.
Answer:
Yes, the investigations will reach similar conclusions about the reactivity of H2 and Cl2
Explanation:
1. The law of multiple proportions says that when elements form compounds, the proportions of the elements in those chemical compounds can be expressed in small whole number ratios. This means that regardless of whether 1000 times more of the products are used, the reactivity of the products is established by the chemical reaction
2. The law of multiple proportions is an extension of the law of definite composition, which states that compounds will consist of defined ratios of elements.
3. A reaction with more reactants will need more care because more products are produced, which can be toxic
4. H2 and Cl2 reactivity does not depend on the quantities but the chemical properties of each compound
A. Mutualism. This is because both the larvae and the flower are benefited. The larvae is fed, and the flower is pollinated.
Hope this helps!
Answer:
C
Explanation: a is incorrect since the lower the ph = more acidic and b is incorrect because it produces hydronium ion and d I’m not sure what it is but I no that base recieve the protons
Answer:
CO is considered as a product.
Explanation:
A general chemical equation for a combination reaction follows:
To write a chemical equation, we must follow some of the rules:
The reactants must be written on the left side of the direction arrow.
A '+' sign is written between the reactants, when more than one reactants are present.
An arrow is added after all the reactants are written in the direction where reaction is taking place. Here, the reaction is taking place in forward direction.
The products must be written on the right side of the direction arrow.
A '+' sign is written between the products, when more than one products are present.
For the given chemical equation:
are the reactants in the reaction and are the products in the reaction.
Hence, CO is considered as a product.