Add the two equations together and combine like terms
Answer:
Volume = 16 unit^3
Step-by-step explanation:
Given:
- Solid lies between planes x = 0 and x = 4.
- The diagonals rum from curves y = sqrt(x) to y = -sqrt(x)
Find:
Determine the Volume bounded.
Solution:
- First we will find the projected area of the solid on the x = 0 plane.
A(x) = 0.5*(diagonal)^2
- Since the diagonal run from y = sqrt(x) to y = -sqrt(x). We have,
A(x) = 0.5*(sqrt(x) + sqrt(x) )^2
A(x) = 0.5*(4x) = 2x
- Using the Area we will integrate int the direction of x from 0 to 4 too get the volume of the solid:
V = integral(A(x)).dx
V = integral(2*x).dx
V = x^2
- Evaluate limits 0 < x < 4:
V= 16 - 0 = 16 unit^3
So,
We'll just use A to represent both Jan and Mya's miles, since they ran the same number.
We have the equations:
1. Jan (J) = Mya (M)
2. Sara (S) = M - 8
3. 2A + S = 64
J = M
S = M - 8
We'll just use A to represent both J and M.
S = M - 8
We'll use Elimination by Substitution.
2A + A - 8 = 64
Collect Like Terms
3A - 8 = 64
Add 8 to both sides
3A = 72
Divide both sides by 3
A = 24
Since
A = J
and
A = M
and
J = M
then
J = 24
M = 24
Substitute
S = 24 - 8
S = 16
Check
24 + 24 + 16 = 64
64 = 64 This checks.
So,
J = 24
M = 24
S = 16
Um there needs to be another equation