![~\hspace{10em}\textit{function transformations} \\\\\\ \begin{array}{llll} f(x)= A( Bx+ C)^2+ D \\\\ f(x)= A\sqrt{ Bx+ C}+ D \\\\ f(x)= A(\mathbb{R})^{ Bx+ C}+ D \end{array}\qquad \qquad \begin{array}{llll} f(x)=\cfrac{1}{A(Bx+C)}+D \\\\\\ f(x)= A sin\left( B x+ C \right)+ D \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~%5Chspace%7B10em%7D%5Ctextit%7Bfunction%20transformations%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20f%28x%29%3D%20A%28%20Bx%2B%20C%29%5E2%2B%20D%20%5C%5C%5C%5C%20f%28x%29%3D%20A%5Csqrt%7B%20Bx%2B%20C%7D%2B%20D%20%5C%5C%5C%5C%20f%28x%29%3D%20A%28%5Cmathbb%7BR%7D%29%5E%7B%20Bx%2B%20C%7D%2B%20D%20%5Cend%7Barray%7D%5Cqquad%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20f%28x%29%3D%5Ccfrac%7B1%7D%7BA%28Bx%2BC%29%7D%2BD%20%5C%5C%5C%5C%5C%5C%20f%28x%29%3D%20A%20sin%5Cleft%28%20B%20x%2B%20C%20%5Cright%29%2B%20D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)


now keeping that template for transformations above in mind, let's take a look at this one

now, the vertex of this type, or original that'll be the origin at (0,0), and its' graph looks like a V.
now let's take a peek at the graph, hmmm from the original V-shape it moved to the left by 2 units, with a horizontal shift of C/B = 2, we can say that +2/1 gives B = 1 and C = +2, and moved upwards by 3 units, namely D = +3.
we can also see that it flipped upside-down over the horizontal(x-axis), namely A is negative, on all choices the only value we see for A is "4", so it must be that A = -4
let's plug all those in
