Answer:
2
Explanation:
Equation of reaction
BaSO₄ + H₂SO₄ → Ba(HSO₄)₂
From the above equation of reaction, it is evident that there are 2 atoms in the product side of the reaction which is only logical because every chemical reaction obey the law of conservation of mass which states that matter can neither be created nor destroyed but can changed from one form to another.
In the reactant side, we have 2 atoms of S from the two reactants coming together.
One sulfur atom from BaSO₄ and the other from H₂SO₄. So therefore, only 2 sulfur can be produced since the reaction has to observe law of conservation of matter
The most condensed state of matter is A. Solid Matter
<span>293 grams
The formula for the wavelength of a massive particle is
λ = h/p
where
λ = wavelength
h = Plank constant (6.626070040Ă—10^â’34 J*s)
p = momentum (mass times velocity)
So let's solve for momentum and from there get the mass
λ = h/p
λp = h
p = h/λ
Substitute known values and solve
p = 6.626070040Ă—10^â’34 J*s/3.45Ă—10^-34 m
p = 1.92 J*s/m
Since momentum is the product of mass and velocity, we have
p = M * V
p/V = M
So substitute again, and solve.
p/V = M
1.92 J*s/m / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
0.293 kg = M
So the mass is 293 grams</span>
Answer:
1,063 grams H₃PO₄
Explanation:
To find the mass of phosphoric acid (H₃PO₄), you should (1) convert molecules to moles (via Avogadro's number) and then (2) convert moles to grams (via molar mass from periodic table).
Molar Mass (H₃PO₄): 3(1.008 g/mol) + 30.974 g/mol + 4(15.998 g/mol)
Molar Mas (H₃PO₄): 97.99 g/mol
6.534 x 10²⁴ molecules H₃PO₄ 1 mole 97.99 g
--------------------------------------------- x ------------------------------------- x --------------
6.022 x 10²³ molecules 1 mole
= 1,063 grams H₃PO₄