1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
2 years ago
12

PLEASE HELPPPJust 16 and 18 ​

Mathematics
1 answer:
zysi [14]2 years ago
8 0

i speak Russian but can’t understand this very well, the instructions aren’t really clear, what’s the translation?

You might be interested in
I need the answers for these please <br>​
WARRIOR [948]

Answer:

1. T

2. line VW

3. W

5 0
3 years ago
Helppppp !!!!!! <br><br>5 ( 3a - 9 ) = ? ​
kherson [118]
<h2>{\bold {\boxed {\colorbox {pink} {\gray {King\:Brainly01}}}}} </h2>

\:

◇◆□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□◆◇

5 ( 3a - 9 )

( 5 × 3a ) - ( 5 × 9 )

15a - 45

◇◆□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□◆◇

\:

4 0
3 years ago
Read 2 more answers
A representative of a car manufacturer in the United States made the following claim in a news report. "Ten years ago, only 53 p
Harman [31]

According to the p-value, the correct option regarding the decision of the test hypothesis is:

v. No, because 0.283 > 0.05.

<h3>What are the hypothesis tested?</h3>

At the null hypothesis, we test if the proportion is still of 0.53, that is:

H_0: p = 0.53

At the alternative hypothesis, we test if it has increased, that is:

H_1: p > 0.53.

<h3>What is the decision according to the p-value?</h3>

  • If p-value > significance level, we do not reject the null hypothesis.
  • If p-value < significance level, we reject the null hypothesis.

In this problem, the p-value is of 0.283 > 0.05, hence there is not sufficient evidence to conclude, at the significance level of a = 0.05, that the proportion of all car owners in the United States who own American-made cars has increased from what it was ten years ago, which means that option V is correct.

More can be learned about p-values at brainly.com/question/16313918

3 0
2 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Which one don’t lie
Marat540 [252]

Answer:

lol the answer is B

5 0
3 years ago
Read 2 more answers
Other questions:
  • When the factors ofa trinomial are (x+ p) and (x + q) then the coefficient ofthe x- term in the trinomial is:?
    9·1 answer
  • Write an equation for the line that passes through the two points:<br> (4,3), (6, -3)
    8·1 answer
  • a pair of adjacent side of a rectangle are in the ratio 3 : 4 if its diagonal is 20 cm find the length of sides and hence the pe
    15·1 answer
  • Simplify fully:<br> 4d² - 6d² + 5d²<br><br> and<br><br> 7x + 5y - 3x - 8y
    14·1 answer
  • 1). Write an equation of a line with the given slope and y-intercept.
    6·1 answer
  • What time is it on the left side of the airplane
    10·1 answer
  • What is the imaginary part of 21 – 14i?
    8·2 answers
  • 1) f(x)=-4x - 2)(x + 4)<br><br> Please help
    13·1 answer
  • 8) T
    12·1 answer
  • One year josh had the lowest ERA​ (earned-run average, mean number of runs yielded per nine innings​ pitched) of any male pitche
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!