Answer: To remove waste from the body
The Excretory system is responsible for the elimination of wastes produced by homeostasis.
Question: <em>An exercise that causes the muscle to contract against an external force is called?</em>
Answer: Resistance training. The name is pretty self-explanatory, resistance; going against an external force? This exercise mains in increasing your strength, endurance, and hypertrophy and is used by many bodybuilders who are trying to build up muscle fast.
Uplifting Note: Breakfast is the meal you share with everyone since you're all starting the day together, go and plan something tasty!
Answer:
Image result for A large kick; a controlled beating movement of the leg
In French, a grand battement means “large beating” or “big kick”. ... In less technical terms, a grand battement can be described as a movement in which the dancer extends one leg outward to the front, side or back of the body and then returns it back to the supporting leg.
I hope this helps
Explanation:
That statement is correct...
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = x(1 + x)³
<u>Step 2: Differentiate</u>
- Product Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot \frac{d}{dx}[1 + x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B1%20%2B%20x%5D)
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot (\frac{d}{dx}[1] + \frac{d}{dx}[x])](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%28%5Cfrac%7Bd%7D%7Bdx%7D%5B1%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%29)
- Basic Power Rule:

- Simplify:

- Factor:
![\displaystyle y' = (1 + x)^2 \bigg[ (1 + x) + 3x \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%281%20%2B%20x%29%5E2%20%5Cbigg%5B%20%281%20%2B%20x%29%20%2B%203x%20%5Cbigg%5D)
- Combine like terms:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e