I'm pretty sure the answer is 8 feet. You do 4-2=2 then 16 divided by 2 which would equal 8 feet.
Answer:
- The probability that overbooking occurs means that all 8 non-regular customers arrived for the flight. Each of them has a 56% probability of arriving and they arrive independently so we get that
P(8 arrive) = (0.56)^8 = 0.00967
- Let's do part c before part b. For this, we want an exact booking, which means that exactly 7 of the 8 non-regular customers arrive for the flight. Suppose we align these 8 people in a row. Take the scenario that the 1st person didn't arrive and the remaining 7 did. That odds of that happening would be (1-.56)*(.56)^7.
Now take the scenario that the second person didn't arrive and the remaining 7 did. The odds would be
(0.56)(1-0.56)(0.56)^6 = (1-.56)*(.56)^7. You can run through every scenario that way and see that each time the odds are the same. There are a total of 8 different scenarios since we can choose 1 person (the non-arriver) from 8 people in eight different ways (combination).
So the overall probability of an exact booking would be [(1-.56)*(.56)^7] * 8 = 0.06079
- The probability that the flight has one or more empty seats is the same as the probability that the flight is NOT exactly booked NOR is it overbooked. Formally,
P(at least 1 empty seat) = 1 - P(-1 or 0 empty seats)
= 1 - P(overbooked) - P(exactly booked)
= 1 - 0.00967 - 0.06079
= 0.9295.
Note that, the chance of being both overbooked and exactly booked is zero, so we don't have to worry about that.
Hope that helps!
Have a great day :P
Hi there!

To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:

Answer:
3.58
Step-by-step explanation:
You have to divide 304 by 85
you will get 3.57647058824
You have to round it to the nearest hundedth which will leave you with 3.57