Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2
To find average atomic mass you multiply the mass of each isotope by its percentage, and then add the values up.
35 * 0.90 + 37 * 0.08 + 38 * 0.02 = 35.22
Average atomic mass closest to 35.22 amu.
First, we will convert the mass of the gallon to grams:
a gallon of water has a mass of 3.79 * 1000 = 3790 grams of water
number of moles can be calculated using the following rule:
number of moles = mass / molar mass
Therefore,
number of moles = 3790 / 18.02 = 210.32 moles
Answer:
4.90 g
Explanation:
Given that:
volume of t-pentyl alcohol = 5 mL
the standard density of t-pentyl alcohol = 0.805 g/mL
Recall that:
density = mass(in wt) /volume
mass = density × volume
mass = 0.805 g/mL × 5 mL
mass = 4.03 g
Volume of HCl used = 12 mL
The reaction for this equation is shown in the image attached below.
From the reaction,
88.15 g of t-pentyl alcohol reacts with concentrated HCl to yield 106.59 g pf t-pentyl chloride.
4.03 g of t-pentyl alcohol forms,
of t-pentyl chloride.
Therefore,
Theoretical yield of t-pentyl chloride = 4.90 g