The radius of the anion is 7.413 nm
<h3>How to calculate the force of attraction between charges</h3>
The force of attraction (F) is given by the formula:
- F = (1/4π∈r²)(Zc*e)(Za*e)
where:
∈ = permittivity of free space = 8.85*10⁻¹⁵ F/m
Zc = charge on the cation = +2
Zc = charge on the anion = -2
e = charge on an electron = 1.602 * 10⁻¹⁹ C
r = interionic distance
r = rc + ra
where rc and ra are the radius of the cation and anion respectively
F = 1.64 * 10⁻⁸ N
Therefore based on the equation of force of attraction:
1.64 *10⁻⁸ = [1/4π(8.85*10⁻¹⁵)r²](2 * 1.602*10⁻¹⁹)²
r² = 5.63 * 10⁻¹⁷
r = 7.50 nm
Since r = rc + ra
where rc = 0.087 nm
thus, ra = r - rc = 7.50 - 0.087
ra = 7.413 nm
Therefore, the radius of the anion is 7.413 nm
Learn more about ionic radius at: brainly.com/question/2279609
The Embargo Act of 1807 and the Neutrality Acts of the 1930's were both attempts by the United States to avoid foreign conflicts. The correct option in regards to all the options given in the question is option "3".
The Embargo Act of 1807
prohibited all kinds of exports from United states of America. This Act would
treat any export as illegal. This Act was also intended to keep America from
avoiding any conflicts with the warring nations. The Neutrality act was also
intended towards remaining neutral towards all fighting nations.
I think cathode should be silver or gold
you can use silver nitrate solution or mercury nitrate solution
Answer:
C Rate ![=k [A]^{2} [B][C]^{-1}](https://tex.z-dn.net/?f=%3Dk%20%5BA%5D%5E%7B2%7D%20%5BB%5D%5BC%5D%5E%7B-1%7D)
Explanation:
In order to determine the correct rate law, let's use Trial 1 as baseline. Therefore:
An increase in [A] in Trial 2 by a factor of
leads to an increase in the rate of reaction by a factor of 2 (i.e. the reaction rate is doubled). Thus, there is second order in [A].
Similarly,
An increase in [B] in Trial 3 by a factor of 1.667 leads to an increase in the rate of reaction by a factor of 1.667. Thus, there is first order in [B].
Futhermore,
An increase in [C] in Trial 4 by a factor of 1.71 leads to a decrease in the rate of reaction by 1.71. Thus, there is inverse first order in [C].
Therefore, the correct rate law is:
Rate ![=k [A]^{2} [B][C]^{-1}](https://tex.z-dn.net/?f=%3Dk%20%5BA%5D%5E%7B2%7D%20%5BB%5D%5BC%5D%5E%7B-1%7D)