Answer:
Explanation:
21. Atoms are not created or destroyed means that atoms that you begin with are the atoms that you will end with. The catch is that the atoms will rearrange to give you new compounds, but the atoms that you initially had are the atoms you will still have after reaction. For eg, if you started with eggs and made omelet. Omelet is a "new" compound, but the atoms that were in the eggs have rearranged to become the omelet so can you see that atoms were not created or destroyed to make the omelet.
22. Yes because amount of products you make depends on how much reactants you have. For eg, I need two graham cracker(GC), one marshmallow(M), and one chocolate (C) to make a s'more. If I get more of each item then I can make more s'mores and consequently having minimum amounts results in less s'mores that I make.
23. Not possible, due to law of conservation of matter and energy. Atoms cannot be created nor be destroyed, they are simply rearranged. For eg, Taking A + B cannot give you a new compound with a chemical formula D or XZ. A + B can however give you AB which is rearrangement of the starting atoms.
24. Chemical equation is balanced when atoms on reactant side and atoms of product side are in equal counts. I have attached a graphic below for more help.
Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂
Gases have high kinetic energy: the molecules are moving much more than in a liquid or solid. You can cut out A and B. In the liquids, the difference is temperature. If a lower temperature is closer to being solid, and a solid has lower kinetic energy than a liquid, then C is the answer. Hope this helps.