Answer:
1-As winds rise up the windward side of a mountain range, the air cools and precipitation falls.
2-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls.
3-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls. On the other side of the range, the leeward side, the air is dry, and it sinks.
4-Rain shadow deserts are formed because tall mountain ranges prevent moisture-rich clouds from reaching areas on the lee, or protected side, of the range.
5-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls. On the other side of the range, the leeward side, the air is dry, and it sinks. So there is very little precipitation on the leeward side of a mountain range.
6-Mountains and mountain ranges can cast a rain shadow. As winds rise up the windward side of a mountain range, the air cools and precipitation falls. On the other side of the range, the leeward side, the air is dry, and it sinks. So there is very little precipitation on the leeward side of a mountain range.
Explanation:
#6 and 5 are the same
Answer:
energy transform mechanical to motion
Answer:
The answer to your question is T2 = 580.5 °K
Explanation:
Data
Temperature 1 = T1 = 273°K
Pressure 1 = P1 = 388 kPa
Pressure 2 = P2 = 825 kPa
Temperature 2 = ?
Process
1.- Use the Gay-Lussac law
P1/T1 = P2/T2
-Solve for T2
T2 = P2T1/P1
-Substitution
T2 = (825)(273) / 388
-Simplification
T2 = 225225 / 388
-Result
T2 = 580.5 °K
Answer:
average speed
= [(10-3)/12 km] / [(49.5-32.0)/60 hour]
= 5*7 / 17.5
= 2 km/h .
Answer:
0.0478 T
Explanation:
L = 2 cm = 0.02 m, N = 400, i = 1.9 A
The magnetic field intensity due to a current carrying solenoid is given by
B = \mu _{0}ni
Where, n be the number of turns per unit length
n = N / L = 400 / 0.02 = 20,000
B = 4\pi \times 10^{-7}\times 20000\times 1.9
B = 0.0478 T