Answer:
B temperature is an indirect measurement of the heat energy in a substance
Explanation:
The concept of temperature can be easily understood by looking at what happens when two objects are placed in contact with each other. By common experience, we know that the hotter object transfers heat energy to the colder object, until the two objects are in thermal equilibrium (= they have same temperature).
Thinking about the example above, we can say therefore that the temperature is an indirect measurement of the heat energy possessed by an object (or substance).
For a monoatomic gas, for instance, we define its internal energy as

where n is the number of moles, R is the gas constant, and T is the absolute temperature. From the formula, we see that the temperature is related to the internal energy of the gas, so measuring the temperature means indirectly measuring its internal energy.
If the impulse is 25 N-s, then so is the change in momentum.
The mass of the ball is extra, unneeded information.
Just to make sure, we can check out the units:
<u>Momentum</u> = (mass) x (speed) = <u>kg-meter / sec</u>
<u>Impulse</u> = (force) x (time) = (kg-meter / sec²) x (sec) = <u>kg-meter / sec</u>
Kinetic energy is the energy applied or present in a moving object. According to Newton's second law of motion the magnitude of acceleration of an object is proportional to the magnitude of the net force but inversely proportional to its mass. So the Kinetic Energy of a moving car of small vehicle is greater than the large vehicle if both are applied with the same net force. The greater the Kinetic Energy the longer the stopping distance