Good ventilation as a product of it is pure Cl2 gas
Answer:
state of matter
Explanation:
so take water for example, water has a melting point and a boiling point right? So if it's below 0 degrees, then it's in its solid phase. If the temperature is above 0 degrees, then the water starts to melt into its liquid phase. Then when the temperature is above 100 degrees, water starts to boil and become its gas phase. This is the same for all substances. The only difference is different substances have different melting and boiling points so the numbers will be different depending on your substance. hope this helped!
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ
1. Mg + CuSO4 —> MgSO4 + Cu
=> Single displacement reaction
2. 2HCI + Mg(OH)2 —> MgCI2 + H2O
=> Acid - base reaction
3.AgNO3 + NaCI —> AgCI + NaNO3
=> Double displacement reaction
Answer:
19.91 J/K
Explanation:
The entropy is a measure of the randomness of the system, and it intends to increase in nature, thus for a spontaneous reaction ΔS > 0.
The entropy variation can be found by:
ΔS = ∑n*S° products - ∑n*S° reactants
Where n is the coefficient of the substance. The value of S° (standard molar entropy) can be found at a thermodynamic table.
S°, Cl(g) = 165.20 J/mol.K
S°, O3(g) = 238.93 J/mol.K
S°, O2(g) = 205.138 J/mol.K
So:
ΔS = (1*205.138 + 1*218.9) - (1*165.20 + 1*238.93)
ΔS = 19.91 J/K