Biomolecules also called biological molecules, any of numerous substance that are produced by cells and living organisms
<span>The pressure inside a coke bottle is really high. This helps keep the soda carbonated. That is, the additional pressure at the surface of the liquid inside the bottle forces the bubbles to stay dissolved within the soda. </span><span>When the coke is opened, there is suddenly a great pressure differential. The initial loud hiss that is heard is this pressure differential equalizing itself. All of the additional pressure found within the bottle pushes gas out of the bottle until the pressure inside the bottle is the same as the pressure outside the bottle. </span><span>However, once this occurs, the pressure inside the bottle is much lower and the gas bubbles that had previously been dissolved into the soda have nothing holding them in the liquid anymore so they start rising out of the liquid. As they reach the surface, they pop and force small explosions of soda. These explosions are the source of the popping and hissing that continues while the soda is opened to the outside air. Of course, after a while, the soda will become "flat" when the only gas left dissolved in the liquid will be the gas that is held back by the relatively weak atmospheric pressure.</span>
The identity of the metal is copper.
<h3>What is specific heat?</h3>
The amount of energy needed to raise the temperature of one gram of a substance by one degree Celsius.
Using the formula of specific heat
H = mcdT
Where, H = Heat absorbed
m = mass of the metal
c = specific heat capacity of the metal
dT = temperature change
Putting the values in the equation
20 J = 0.0052 Kg × c × ( 40.0°C - 30.0°C)
c = 20 J/0.0052 Kg × ( 40.0°C - 30.0°C)
c = 385 JKg-1°C-1
Thus, the metal is copper.
Learn more about specific heat
brainly.com/question/11297584
#SPJ4
B.
Explanation:
iehebrkee keen enensjsb sh sry need to get the points?
Answer:
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment.